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1 Introduction

Since its invention by Rudolf E. Kalman in 1960, (refs. 1 through 5)[1]-[5] the Kalman
filter has found widespread applications in commercial industry, the defense industry, and
in academia. (In this report, all references are enclosed in square brackets, i.e., [1] stands
for reference 1, etc.; and all equations are indicated by equation numbers in parentheses,
i.e., (1) stands for equation 1, etc.) The Kalman filter is especially important in military
applications where guidance, control, and signal processing systems must achieve a high level
of performance. Although many books and articles have been published on the theory of the
Kalman filter [6)-[11] the derivation of the Kalman filter equations is often difficult to follow.
Unfortunately, this may leave the unacquainted engineer or scientist without quick access
to the main results. For many, there is little time to wade through all the mathematical
proofs and derivations which lead, finally, to the Kalman filter equations. Nevertheless,
the derivation of the filter equations is not difficult, and for educational purposes it is
desireable to simplify it as much as possible. The purpose of this brief report is to present
a straightforward derivation of the Kalman filter which is concise and simple. A simple
derivation of tCe filter equations should make the theory readily accessible to anyone who
is interested.

It is assumed that the reader has achieved a certain level of mathematical maturity
which includes a good knowledge of calculus, linear algebra, and probability theory. Also,
the reader should be familiar with linear systems theory and the state space description
of linear systems. Furthermore, it is desireable, though not essential, that the reader has
had an introduction to stochastic processes. For those who are not familiar with stochastic
processes, section 3 may be safely omitted without loss of continuity. Throughout this
report all vectors and matrices will be written in boldface type, and it is assumed that all
vectors and matrices are real valued. Regarding terminology, the terms random variable
and random vector will be used interchangeably since this should not lead to confusion.

The report is structured as follows. The method of least squares is reviewed in section
number 2. In section 3 it is shown that for statistical reasons the least squares estimate of a
random quantity must be considered to be a random variable. The Kalman filter equations
are derived in sections 4, 5, 6, and 7. In section 4, the basic Kalman filter, or Kalman
predictor, is derived in 1-dimension. This is then extended to the n-dimensional case in
section 5. In section 6, the standard Kalman filter equations are derived in the general
n-dimensional case. The initial conditions for the standard Kalman filter require some
special consideration, and these are derived in section 7. Relations between the Kalman
predictor and the standard Kalman filter are developed in section 8.

2 Least Squares Estimation

Consider a physical system in a steady state (not time varying) and let the state be
described by a state variable x. In the steady state, x is a constant. Suppose that a
measurement made on the system yields a value z. The measurement process is not perfect
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and will inevitably contain errors, i.e., experimental errors. Thus the measurement process
can be modeled by the measurement equation

z = HZ + v, (1)

where H is a scale factor which is built into the measurement equipment and v is a random
variable which characterizes the measurement errors. The probability density function
(PDF) of the random variable v is assumed given. Typically, v has a normal distribution
with zero mean and known variance. Once a measurement z has been obtained in the lab,
the problem is to find an estimate i of the state z based on the noise-corrupted measurement
z. It is intuitively obvious that if the error is small then the desired estimate is simply z/H.
In mathematical terms, this problem can be solved using the method of least squares. Let
i be an unknown variable and define the error

e = z - Hi. (2)

Since z and H are fixed real numbers, the error is a function of the variable i. In the
method of least squares, the best estimate 1 is that which minimizes the square error

E = Cz- Hi)2. (3)

Since e = e(l) is a function of 1, this will be a minimum if

de
-0. (4)

Differentiating (3) yields
de
S= 2(z-H!)(-H) = 0. (5)

Hence, the solution is
Z (6)
H

as was expected. To verify that this is a minimum and not a maximum examine the second
derivative

-- 2H 2 >. (7)

Since this is positive, the value of f given by (6) is indeed a minimum.

Next, consider the same problem in n-dimensions. The generalized measurement model
is given by

z = Hx + v, (8)

where x is an n-dimensional column vector, z is an m-dimensional column vector of
measurements, and H is an m x n matrix. The m-dimensional column vector v is a zero
mean random vector that describes the measurement errors. The PDF of v is assumed
given. For simplicity, it will be assumed that m = n, and that H is nonsingular. Observe
that the quantities z and H are given and the state vector x is to be estimated from the
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measurements. Thus, the problem is to find the estimate 1 of the state vector x which
minimizes the square error C = 1l1Zi- H*II2. (9)

The square error is a scalar and may be written

C = (z - Hk:)T(z - H), (10)

where the superscript T denotes the transpose. Expanding the product this becomes

C = zTz - zTH* _ *THTZ + THTHr . (11)

All quantities are known except for k. Therefore, the square error e is a function of the
components of 1, that is,

e = All, &2,...., f.). (12)

Using a well known result from advanced calculus, this function will be a minimum if

L =0, (13)

for i = 1,2,..., n. It is convenient to define the derivative of a scalar with respect to a
vector to be the column vector with components

(2 ) O (14)

where
( = (15)

i = 1,2,..., n. Thus, the square error will be a minimum if

S0. (16)

The terms in equation (11) can be differentiated by using the following identities:

•(y x)= y, (17)

0 ()
5(x T y) =y (18)

5--(xTAX) - 2Ax, (19)

where x and y are arbitrary vectors and A is an arbitrary matrix. These relations are easy
to prove by writting them out in component form. Proceeding with the differentiation of
equation (11), it follows that

8e
- -H Tz - HT z + 2H TH- = 0. (20)
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Rearranging terms, this becomes
HTH* = HT z. (21)

This system of linear equations are called the nurmal equations. Clearly, 1 will minimize
the square error (9) if it is a solution of the normal equations (21). If H is nonsingular, i.e.,
invertible, then thL solution is given by

2 = H-'z. (22)

This is the least squares estimate of the state vector x based on the noise-corrupted vector
of measurements z. Note the close similarity with the 1-dimensional solution (6). In the
general case when m and n are arbitrary, the solution to the normal equations is given by

R= (H T H)- 1 H Tz, (23)

provided that the indicated inverse exists.

3 Prediction Problem

In the derivation of the Kalman filter equations in section 4, the estimate i is considered
to be a random variable and not a numerical vector as it was in section 2. The reason for
this difference of interpretation will be explained in this section. For simplicity, only scalar
(1-dimensional) variables will be considered here.

The linear prediction of stochastic processes involves the following problem. Given a
realization of a random process with the observed values X0, xj, ... , XN, . .. , find an estimate
of the value *N+i of the process at time N + 1 based on the preceeding values up to and
including xN. This is called the prediction problem. The estimate is called linear if it is a
linear function of the variables xo, Xl,..., xN, that is, if the estimate has the linear form

N

*N+1 E akXg. (24)
kr=O

It is possible to solve this problem using the method of least squares by minimizing the
squared error

S= IXN+I - XN+11l2 " (25)

By inserting the expression (24) into equation (25), the coefficients ao, al,..., ajq may be
computed using the method of the previous section. However, the solution for the prediction
coefficients ao, a,,..., aN will be different for different realizations of the same process. That
is to say that if x;, x ,..., x'v were another realization of the same stochastic process, then
the resulting solution for the ak will be different. It is desireable to choose the coefficients
so that the same set of coefficients may be used for any arbitrary realization of the process
x(n). That is, so that in a statistical sense the same coefficients work equally well for
any realization of the stochastic process. To accomplish this, it is necessary to rephrase
the problem as follows: Given the random variables xO, x1,..., XN, find a random variable
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AN+l which is a linear combination of the random variables xo, x, ... ,xN, such that the
mean square error

S= E[ll~.i +- xNv+1ll2] (26)

is a minimum. In this case, the resulting estimate is a random variable XN+1 which approx-
imates the random variable XN+1 in the sense that the variance of the error e = (1 - x) is
a minimum. This is called the least squares estimate or minimum variance estimate of the
random variable xN+1.

Problem Statement: Let z(n) be a weakly stationary stochastic process and assume
that E[x(n)] = 0. Fix N. The problem is to determine the coefficients a, a2 ,. .. ,aN, so
that the random variable defined by

N
y =E akzN..k, (27)

k--1

minimizes the mean square error

e = E[lXN_ y3112]. (28)

This problem was first considered by the Russian mathematician Kolmogorov in 1938. A
translation of Kolmogorov's original paper can be found in reference [12]. The solution is
so straightforward that Kolmogorov did not even bother to write it down.

Problem Solution: The mean square error is given by

e = E[z1. - 2zNy + y-2]. (29)

Substituting the expression (27) for y this becomes

N N N
S--E[X2 - 2 E akzNzN-k + • Y ajakzN-jXi-Nk]. (30)

k-=1 j=1 k=1

By the definition of the autocorrelation function R(n, m), which for a stationary process
takes the form

E[XnX - R(n - m), (31)

the mean square error (30) can be written

N N N
e = R(0) _ 2 F, akR(k) + Ej 1: 4ak.R(j - k). (32)

k=1 j=1 k=1

Since the autocorrelation function is known, e can be considered to be a function of the
variables a,, a2,. aN, that is,

C f f(a,, a2., aN). (33)
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Hence, the values of the coefficients ak which make f(a,,..., aN) a minimum must satisfy
the equations

-- 0, (34)

a-t = 0' (35)

ýa-

at 0' (36)
OaN

Differentiating equation (32) with respect to ak it follows that

86 N

oa-k = -2R(k) + 2 L aiR(j - k) = 0, (37)
j=1

where k = 1,..., N. This yields the nonhomogeneous system of linear equations

N

: aiR(j - k) = R(k), (38)
j=1

where k = 1,..., N. In matrix form, this may be written

A.x=b, (39)

where
h R(O) R(1) R(2) R(3) ... R(N-1))

A = R(1) R(O) R(1) R(2) .. R(N - 2) (40)

\R(N- 1) ... ... ...... R(O)

(al\ (RN)\
x-- 1, and b- j . (41)

If the matrix A is nonsingular, then the system (39) has the solution

x = A-'b. (42)

This gives the solution for the prediction coefficients al, .. ., aN . For a good introduction to
the linear prediction theory of stochastic processes, the reader should consult the original
edition of the book by Yaglom [131

The solution of the prediction problem is not really important here. What is important
is the idea involved in the formulation of the problem. The most important point of this
section is that in a statistical sense the estimate iN must be a random variable, not a
number. In practice, if a particular (numerical) realization Xo, X,,..., XN-1 is observed,
then the estimation formula (27) may be used to obtain a numerical result. However,
the estimation formula is a general result that applies for any realization of the stochastic
process.
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4 Kalman Filter in 1-Dimension

In this section, the Kalman filter equations will be derived for the 1-step Kalman pre-
dictor. Consider a dynamical system that evolves in time according to the state equations

Xn+1 = FX, + W,, (43)

n = 0, 1, 2,..., where {Fn})°__o is a given sequence of real numbers and {wn}_--o is an
independent, identically distributed (i.i.d.) sequence of zero mean random variables. The
random sequence {wvj is often refered to as a white noise sequence since any two members
of the sequence are uncorrelated, i.e., E[w,twn] = 0 for n : m. The noise-corrupted
measurements of the system state are described by the measurement equation

S= H nxn + V,, (44)

n = 0, 1, 2,..., where H, is a proportionality factor (usually a constant) which is built
into the measuring device. In general, fHn}. is a given sequence of real numbers. The
measurement errors or measurement noise is described by the random sequence {vn} which
is a zero mean i.i.d. sequence. It is further assumed that the sequences {fwn} and {vn} are
uncorrelated and that

E[v] = a2, (45)

E[wý = o.2, (46)
E[vnwm] = 0, (47)

where n, m = 0, 1,2,..., and where a2 and a,2 are given real numbers. (In general, the
variances of vn and tDn may depend on n, and the results of this section are easily extended
to include this case.) To complete the specification of the system dynamics it is necessary
to give some initial condition for z0 . Instead of giving a fixed initial condition, zo will be a
random variable with a known probability density function f(zo). Typically, zo is normally
distributed with mean 2o and variance a02, that is

Furthermore, the random variable x0 is assumed to be uncorrelated with the noise sequences
{wn} and {v,}. There is one remark which should be made about the initial condition: the
PDF f(zo) is not needed in the derivation and it is, therefore, irrelevant; it is only necessary
to know the mean io and the variance a2 of the random variable zo. Now to the problem
at hand. In simple terms, the purpose of the Kalman filter is to make a prediction of the
future state Xn+1 at time n + 1 given noise-corrupted measurements zo, zl,..., zn from the
time k = 0 up to the time k = n.

Problem Statement: Given the measurements zo, zl,..., zn, find the unbiased least
squares estimate in+l for the state variable xn+l. Assume that the estimate has the linear
recursive form

in+, = KnZ. + K'n. (48)
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Note that the recursive form (48) implies that the estimate &,+, is a linear combination
of the random variables zo, zl,..., zn. Consequently, !,,+ is a random variable too, and it
makes sense to discuss the expectation of in+j. This will appear in the derivation.

Problem Solution: If the estimate in+, is unbiased, then by definition E[•n+1 -
-n+l] -= 0. Using equations (43) and (48) one has

i,+1 - Xn+l = (KnZ, + K,,i,) - (Fnz, + w,.). (49)

Substituting equation (44) and rearranging terms this yields

:,,+l - X,+1 = (K,,H, - F,)zx + Ki,, + KnVn - W,,. (50)

Taking the expectation of both sides of this equation gives

E[•i+, - Xn+1] = (KHn - F,)E[xn] + K' E[in] = 0. (51)

But by hypothesis in is unbiased, and therefore E[x,,] = E[in]. Thus, equation (51) implies

K' = F. - KHn. (52)

Having solved for Kn, it is now necessary to determine Kn and the derivation will be
complete.

The coefficient Kn must be chosen to minimize the mean square error

S= E[(-n~l - X.+1)2]. (53)

Using the result (52), equation (50) can be written

(i.+1 - ZTn+l) = (F. - KHn)(i, - x,) + Kgv, - wn. (54)

Squaring this equation and taking the expectation of both sides yields
E , - z 1 )"] = (F, - KH,)2E[(&, - x,)] + g ,ar + a2. (55)

It is useful to define the error variance

S= E [(i - Xn)2]. (56)

The previous equation may then be written in the form

Pn+1 = (fn - KnH,) 2P, + Kg2a", + a. (57)

This equation expresses the mean square error E = Pn+j as a function of Kn. From elemen-
tary calculus, this will be a minimum when

d-- =0.

dKn
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This implies
+= 2(F. - K.H.)(-H.)P. + 2K,,or = 0. (58)

Solving for K., one finds

F. H. P.9)K,=H'2p. + 0,"(59

To verify that this is a minimum and not a maximum take the second derivative

.+1 = 2H,,P. + 2o,. > 0.
dK2

Since H,2, Pn, and a! are all positive, the second derivative is greater than zero which
implies that the value of K& given by (59) is indeed a minimum. Substituting the result
(59) into equation (57) yields

F2 p

p.+1 F=P,2  (60),/p. + a +'2

which may be written in the equivalent form

P.+j = Fn(F. - KRHR)P, + ,.2 (61)

This completes the derivation in the 1-dimensional case.

In summary, the Kalman filter equations in 1-dimension are given by

in+1 = F.i. + K.(zn - Hw..), (62)

P,,+ = (F. - Kn H.)FnP,. + a2, (63)

Kn = F.H.+Pn'(64)

where n = 0, 1, 2,.... In an actual implementation of the Kalman filter, the input is the
measurement sequence z, and the output is the sequence of state predictions i,+,. In
real-time applications, the input and output are sequences of real numbers. The output
:i,+, is obtained from the input zn through equations (62), (63), and (64). In order to
initialize the Kalman filter algorithm, it is necessary to specify the initial conditions. The
initial conditions are given by

-o = io, (65)
PO = 42. (66)

It is interesting that the sequences P, and Kn are not dependent on the measurements.
Therefore, the sequences P,, .nd Kn can be precomputed before any measurements are
taken. Of course, these quantities can also be computed in real-time if desired. In conclu-
sion, one implementation of the Kalman filter algorithm is as follows:

1. Set n = 0,
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2. Initialize to = i0,

3. Initialize PA o2,

4. Calculate K. from equation (64),

5. Calculate &,+, from (62),

6. Calculate P,,+i from (63),

7. Increment n and goto step 4.

5 Kalman Filter in n-Dimensions

In n-dimensions, the system is characterized by an n-dimensional state vector x which
satisfies a state equation of the form

xk+l = FkXk + Wk, (67)

where k = 0, 1, 2,.., {Fk} is a given sequence of n x n real matrices, and {wk} is an i.i.d.
sequence of zero mean random vectors. The measurements of the system outputs are related
to the state vector by the measurement equation

Zk = HkXk + vk, (68)

where zk is an m-dimensional vector of measurements, {Hk} is a given sequence of m x n
matrices, and {vk} is an i.i.d. sequence of zero mean random vectors. To complete the
specification of the sequences {vk} and {wk}, it is necessary to know the covariance matrices

E[vvjfl = Rk, (69)

E(wkwfl = Qk, (70)

where k = 0, 1, 2, . In addition, the sequences {vk} and {wk} are uncorrelated so that

E[vjwfl = 0, (71)

where j and k are any non-negative integers. The sequences of matrices {Rk} and {Qkl are
assumed to be given. In addition, these are both symmetric and, by assumption, positive
definite matrices for each k. Finally, the initial condition on the state equation is that xo
is a random vector with a probability density function f(xo). As remarked in section 4,
it is not strictly necessary to know the PDF of xo, but only the mean Ro and covariance
matrix Po = E[(xo - o) (Xo-_o)T]. Usually, xo has a multivariate normal distribution with
known mean and covariance matrix. Furthermore, it is required that xo be uncorrelated
with the sequences {vk} and {wk}. Before proceeding with the derivation of the Kalman
filter equations, observe that the vectors x, and zn, which are defined by equations (67)
and (68), are both random vectors.
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Problem Statement: Given the measurements z0 , zj,..., z, find the unbiased least
squares estimate f•+, for the state vector x,+,. Assume that the estimate has the linear
recursive form

k+l = K.z. + K',k. (72)

As in the 1-dimensional case, the vector k+, is random since it is a function of the random
vectors Z0, Z1, v •izn.

Problem Solution: Since the estimate ZP+I is unbiased, this implies E[k.+1 -x+,+] =
0. From equations (67) and (72),

k.+, - x.+, = (Knzn + K:kn) - (Fnxn + wn). (73)

Substituting equation (68) for zn and rearranging terms this becomes

kn+i - xn+l = (KnHn - F.)xn + K'.Y + Knvn - w.. (74)

Taking the expectation of both sides of this equation gives

E[*.+, - xn+l] = (K.H. - Fn)E[xn] + K'E[kn]. (75)

But by hypothesis x, is unbiased, and therefore E[x,,] = E[fcZ]. Thus, equation (75) implies

K• = Fn - KHn. (76)

This is the solution for K'.

Next, the coefficient K, will be obtained by minimizing the mean square error. This is
similar to the procedure used in the 1-dimensional case. The mean square error is given by

e = E[IIZ,+1 - x+112] = E[(Z1+i - x.+i)T (Z1+I - xn+1 )]. (77)

For the purpose of taking derivatives, it is convenient to express this in the form of a trace.
Therefore, write

e = Tr E[(k.+1 - x+ 1 )((i+l - x 1 ,+i)]. (78)

Now define a new quantity

Pn+1 = E[(*.+1 - xn+l)(!•n+ - x.+I)T]. (79)

This is called the error covariance matriz. Then the mean square error becomes

e = Tr (Pn+l). (80)

In order to evaluate this, start by using equations (74) and (76) to write

(:-i-1 - x.+l) = (Fn - KnH.)(k. - xn) + (Knvn - wn). (81)
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Thus,

(Z1 +1 - x.+l)(*.+i - x.+,) T = [(F. - K.H.)(k. - x.) + (Kv. - wn)]x[(iý._ X)T(F _• T T T_ T]

4(F - H.Kj) + (v.Kn - wn)]. (82)

By expanding the product and then using the linearity of the expectation, this equation
yields

P =+ = (F. - KnHn)Pn(Fn - HTK) + KIRnK + Q, (83)

where

Pn = E[(n- x.)(Z,- xn)T], (84)

R. = E[vnv , (85)

Qn = E[wn!w•. (86)

Of course, use has been made of the fact that :P, and xn are both uncorrelated with vn and
w,•. By expanding the first term in equation (83) this may be written

P,+l = FPnF T - F.PHTKT - K•HPnFT

+ KnHnPnH TKT + KniRKT + Qn. (87)

To determine Kn, it is necessary to minimize the mean square error

S= Tr (P,+I). (88)

Note that the trace is a scalar quantity and therefore e is a scalar function of the elements
(Kn)ij of the matrix Kn. Furthermore, since Pn is independent of Kn, the minimum can
be obtained by straightforward differentiation. Thus,

81 =0 o(89)

for i = 1,...,m, and j = 1, ... ,n. This may be written more compactly in the matrix form

8e =0 (90)

where the indicated derivative is a matrix with the i, j element given by equation (89). The
derivative can be computed easily with the use of the following identities:

aXTr (AB) = BT , (91)

8A-Tr (BAT ) = B, (92)

ý-Tr (ABAT ) = 2AB. (93)
OA
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These are easily proved. (For example, write out the matrix products for the case when all
the matrices are 2 x 2 and then take the derivative of the trace.) Using these formulas to
differentiate the trace of equation (87) it is a simple matter to obtain

-' = -FP F• - (H.PnF )T + 2KH,,P•H• + 2KIR. = 0. (94)

Rearranging terms, this becomes

K,,(HnPnH T + Rn) = FPIHn. (95)

Note that since both Pn and Rn are symmetric matrices, the term

(HnPnHn + R.) (96)

is also symmetric. Furthermore, since both Pn and Rn are positive definite, this implies
that the term (96) is also positive definite. Consequently, all its eigenvalues are positive
which implies that it is nonsingular. Therefore, the inverse exists and the solution of (95)
is given by

Kn = FnPnH T (HnPnlH] + Rp1 - 1. (97)

This is the main result. To be rigorous, it must be verified that this is indeed a minimum
and not a maximum. This detail is omitted for the sake of brevity.

To complete the derivation the result (97) for Kn may be substituted back into equation
(87) to find a simple form for Pn+1 . Substituting (97) into (87) gives Pn+1 -

FnPnFn - FnPn HT[(HnPnHT + P,)- I ]T H]Pn FT

- FnP,1H(HnPnHT + R&)-IHnPnFT

" F.PnHT(HnPnHT + R,) 1 HPnHT[(HnPEPTH + Rn)-1 ]THnPnFT

F.PnHT(HnPnHT + Rn)- 1 1n[(HPnPHT + RI)-r] THnPnF.

"+Qn1 (98)

Since the term (96) is symmetric, the second to last two terms in (98) can be combined to
give

P,1+1 = FIIPnT - FnPnHT(HnPnHT + RP)-IHnPnFT + Q.. (99)

This may be further simplified using (97). Hence,

Pn+i = (Fn - KnHn)PnFl + Qn. (100)

This is the desired result.

This completes the derivation of the Kalman filter in n-dimensions. In summary, the
Kalman filter equations are given by

•k+l = Fn•k + Kn(zn - Hn1k,), (101)

Pn+i = (Fn - KHn)PnFT + Qn , (102)
Kn = FnPnH7(HT P HT + Rn)-l, (103)
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where n = 0,1, 2,.o. The initial conditions are given by

*0 = 10, (104)

P0 = PO. (105)

One implementation of the Kalman filter algorithm is as follows:

1. Set n = 0,

2. Initialize 0o Sto,

3. Initialize Po = o,

4. Calculate K, from equation (103),

5. Calculate *,•+ from (101),

6. Calculate Pn+i from (102),

7. Increment n and goto step 4.

If desired, the sequences K. and P, may be precomputed before running the algorithm.

6 Standard Kalman Filter Equations

In some instances, it is necessary to estimate the current state xn based on measurements
up to and including z,. In the last section, the measurements Zo, zi, ... , zn were used to
estimate the state x,+,. In this section, the measurements z0 ,zj,...,z, will be used to
estimate the state x,. Assuming a recursive form of solution, the calculation proceeds in
exactly the same way as in the previous section. However, it must be understood that the
quantities f,, P,, and KI which appear in this section are not the same as those in section
5. Relationships between the two solutions will be obtained in section 8. For the time
being, the results of this section are completely independent of those of the last section. A
separate solution for the 1-dimensional problem is omitted since it is a special case of the
more general n-dimensional solution. The interested reader may derive the solution to the
1-dimensional case as an excersize.

A word about terminology. The term "standard Kalman filter" is not a part of the
Kalman filtering literature nor is it commonly used by workers in this field. It has been
chosen by the author because the recursive solution to the linear prediction problem of all
orders may be obtained directly from the solution of the "standard" Kalman filter equa-
tions. In section 8, for example, it will be shown how the 1-step prediction may be obtained
from the standard solution.
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Problem Statement: A linear system obeys the state space equations (67) together
with the measurement equation (68). Given the measurements so, zj,..., z, find the un-
biased least squares estimate 1, of the state xf.. Assume that the estimate has the linear
recursive form

. = K.z, + K"'.-1, (106)

where n = 1, 2,...

Problem Solution: To begin, use (106) to write

in - Xn = (Kz + Ký_I) - x,.. (107)

Substituting for xn and z. from the state equation (67) and the measurement equation
(68), this becomes

S- x. = (K.H. - 1)F.-.I -1x + KýI.- 1 + (KHn - 1)wn- 1 + Knvn. (108)

Taking the expectation of this equation, the requirement that the estimate be unbiased
implies

EZin - xn] = (KnH, - 1)F._iE[x_,1 ] + K'E[i.,_.] = 0. (109)

Therefore, since E[ZP.-. - x._i] = 0, this yields

K' = (1 - KnHn)F.-I. (110)

Substituting this back into equation (108), it follows that

(In - xn) = (I - KnHn)F,.-.(*.-I - x.-.) + Knvn + (KnHn - 1)w.-.i (111)

Next, the factor Kn is determined by minimizing the mean square error

C = 111- x_,fII. (112)

To simplify the process of taking derivatives, write this in the form of a trace, that is,

S= Tr E[(iZ - xn))(kn - x) r]. (113)

Using equation (111) together with the linearity of the expectation, this yields

E[(R - x.)(In - x,)9] =

(1 - KnHn)Fn-,E[(fc-I - xn-1) (:k,-i -- Xn-I)T]F•r_ (1 - KnHn)T

+ K.E[vnvn'KT + (K,,Hn - 1)E[w._IwT_ 1](KnH,n - 1)T. (114)

Defining the quantity Pn by

Pn = E[(kn - x.))(Rn - xn)2 ], (115)
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the last equation becomes

S= (1 - KnHn)F.-IP.,-Fnl(1 - K.Hn)

+ KIRK• + (1- KnH,)Qn._(1 - KnHn)T. (116)

Note that Pn- 1 is independent of KI, and therefore is a constant for purposes of differen-
tiation. Now, the mean square error is given by

S= Tr (Pn), (117)

and this will be a minimum if (118)

-nTr (P) =,118)

where the derivative with respect to a matrix is defined componentwise as in (89). Expand-
ing the product in equation (116) yields

P. F-I. TF T T T KT.•IP-F
P, = FF - F_ 1 PnFHnK -K

+ KHnFn-I1Pn-IFnjHnK + KRtPKn + Qn-1
- Qn- 1HTKT - KnHnQn-I + KnHnQn-,HrK. (119)

Taking the trace of this equation and differentiating using the identities (91), (92), and (93),
it follows that

K Tr(Pn) = -2F.-, 1P- FF_ 1 H 2 + 2HT

+ 2KnRn - 2Qn-jHj + 2KnHnQn-IH. (120)

The fact that Rn and Qn are both symmetric has also been used. Equating this to zero
and collecting terms yields

Kn [HnFn-Pn-F + R + HHQn.-HT] =

[Fn-lPn-IFT- T + Qn-iHT]. (121)

This expression can be made more manageable by making the definition

Mn = F.PnFn + Q.. (122)

Hence, equation (121) may be written

Kn [HnMnlHn + R1,] = Mn_.HT. (123)

If the inverse exists, then the solution for K, takes the form

K, = M,- [H,[,M,._.1HT + Rn]-. (124)

But it is easy to see that the inverse does exist since RP, Qn, and Pn, are all symmetric,
positive definite matrices, and all positive definite matrices are nonsingular. Therefore,

16



(124) is the final solution for Kn. The proof that (124) is indeed a minimum and not a
maximum will be omitted.

The expression (119) for P. can be simplified. First, write equation (119) in the form

Pn= Kf,(HMn-lH + n
- KHMn_ - MH•I• + M._.1  (125)

Substituting the result (124) for K, in the first term, but not for KT, the first and third

terms cancel, leaving the result

Pn = (1 - KnHn)M,-. 1. (126)

This is the desired form.

In summary, the standard Kalman filter equations are given by

S= Ks. + (1 - KnHn)Fn-,..n-. , (127)

Kn = Mn-,1 K [HI.Mn-.H + R.]-', (128)Mn-1 nIn-F 19
-- Fn-... 1 P,.-. 1 F~.n- 1 + Qn-,, (129)

P. = (1- KnH,)Mn-1 , (130)

where n = 1, 2,... In order to initialize the Kalman filter algorithm, it is necessary to
define initial conditions for ko, K0 , and P 0 . These initial conditions will be derived in the
next section.

7 Initial Conditions for the Standard Kalman Filter

To determine the initial conditions, the problem is to find the estimate *0 of the initial
state xo based on the one measurement zo. The solution to this problem is straightforward
and may be obtained by the methods used previously. Once the initial conditions are de-
termined, a summary of the resulting Kalman filter algorithm will be presented.

Problem Statement: Let
z = Hx + v, (131)

where x is a random vector with mean i and covariance matrix P, and v is a zero mean
random vector which is uncorrelated with x. Find the unbiased, linear, least squares es-
timate * of the vector x based on the measurement z. Assume that the estimate has the
form

S= Kz + K'R. (132)

This problem bears a close resemblance to the least squares problem of section 2. The
two problems, however, are fundamentally different. The difference is that in equation (8),
section 2, the vector x was a constant, whereas in equation (131) the vector x is a random
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variable.

Problem Solution: To begin, use equations (131) and (132) to write

(k - x) = (KH - l)x + K' + Kv. (133)

Taking the expectation and using the requirement that * is unbiased, it follows that

K'= (1 - KH). (134)

betituting this back into (133) yields

(I - x) = (KH - 1)(x - i) + Kv. (135)

To determine K it is necessary to minimize the mean square error

e = Tr E[(i - x)(i - x)1]. (136)

Using equation (135) together with the linearity of the expectation, it follows that

E[(:- x)(I- x)T1 = (KH - 1)E[(x - i)(x - R)](KH - 1)T

+ KRKT . (137)

Making the definition

P = E[(: - x)(i - x)], (138)

and using the given covariance matrix

I = E[(x - t)(x - 3)0, (139)

this equation becomes

P = (KH - 1)P(KH - 1)T + KRKT . (140)

Then, expanding the product, this may be written

P = KHPHBKr - KHP - PH TKT + P + KRKT . (141)

Taking the trace of this equation and then the derivative with respect to K yields

at = 2KHPH& _ 2pHT + 2KR = 0. (142)
FK-

And, finally, solving this equation for K,

K = PH T(PHH T + R). (143)

This is a familiar result. Clearly, the inverse in (143) exists since P and R are both positive
definite.
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To find a simpified form for P, first write equation (140) in the form

P = K(HPHT + R)K T - KHP - PHTKT + P. (144)

Then, substituting (143) for K in the first term but not for KT, the first and third terms
cancel, leaving

P = (1 - KH)P. (145)

This is the desired form.

Having solved the above estimation problem, the initial conditions for the standard
Kalman filter equations may be obtained by simply putting a subscript '0' on each of the
equations (132), (143), and (145). Thus,

=o = 5o + Ko(zo - Hoo), (146)
Po = (1 - KoHo)Po, (147)
Ko = PoH (HoPoH + Ro) (148)

An outline of the complete Kalman filter algorithm is as follows:

1. Initialize K0 using (148),

2. Initialize Tco using (146),

3. Initialize Po using (147),

4. Set n = 1,

5. Calculate M,,-j from (129),

6. Calculate K, from equation (128),

7. Calculate the state estimate 1n from (127),

8. Calculate P,, from (130),

9. Increment n and goto step 5.

8 Prediction-Correction Formulation

In this section, a relation will be found between the state estimate x of section 6, and
the state prediction kn+l of section 5. Using this result, the preveously separate results of
sections 5 and 6 may be combined into one unified set of equations for both the current state
estimate kn (section 6) and the state prediction R, (section 5). The unified set of Kalman
filter equations consists of the standard Kalman filter equations of section 6, together with
a new equation for the state prediction R,,+ in terms of the current state estimate :i,. This
new equation will be derived in this section. First, to prevent confusion, it is necessary to
introduce some new notation.
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Let *(nln) be the estimate of the state xn based on the measurements Zo,. , Zn, and
let *(n+l-n) be the estimate of the state x,•+ based on the measurements Zo,..., z,. Then
fk(nin) is the solution to the Kalman filter equations (127), (128), (129), and (130), which
were derived in section 6. And k(n+-lln) is the solution to the Kalman predictor equations
(103), (104), and (105), which were derived in section 5. It will now be shown that the
one-step prediction R(n-+ 1In) may be obtained from the current state estimate R(nln) by
the simple relation

R(n+lln) = Fn*(nfn). (149)

A simple, heuristic proof will be given here. A more detailed proof is given in the
appendix. Begin with the fact that, by definition, the estimate i(nln) and the estimate
R(n+l1n) are both linear combinations of the measurements z0, zi,.. - ,z, . Therefore, it is
reasonable to assume that they are related by a linear transformation of the form

1(n+1-n) = An*(nln), (150)

where An is a square matrix. From the state equation (67) it follows that

R(n+l1n) - x,+l = An(f(nln) - (Fnxn + Wn). (151)

Taking the expectation of this equation yields

E[i(n+ lln) - x.+,] = AE(*(njn)] - FnE[xn] = 0. (152)

But, since *(nln) is an unbiased estimate of xn,

E[*(nln)] = E[xn]. (153)

Therefore, equation (152) implies
An = Fn. (154)

This is the desired result.

By adding equation (149) to the standard Kalman filter equations (127)-(130), these
may be rewritten in the following form:

R(n.n) = *(n+lIn) +Kn[zn - Hi(njn-1)], (155)
*(n+11n) = Fjc(njn), (156)

Kn + Mn_,Hn[I-IMHn -Rn]-, (157)
Mn.-i = F.-PPn.-F_IF-i +Qn-1, (158)

Pn = (1-KnHn)M._i, (159)

where n = 0, 1, 2,...- The initial conditions are now given by

R(01- 1) = RO, (160)

M-= Po. (161)

When written in this way, the Kalman filter is a combination of the state update equa-
tion (155) and the state prediction equation (156). These are commonly refered to as the
prediction-correction formulas. This is a convenient form for most applications. A direct
implementation of the Kalman filter algorithm is as follows:
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1. Initialize 1(01 - 1) = Ro,

2. Initialize M- 1 = Po,

3. Set n = 0,

4. Calculate K. from (157),

5. Calculate R(nln) from (155),

6. Calculate R(n+l1n) from (156),

7. Calculate Mn- 1 from (158),

8. Calculate Pn from (159),

9. Increment n and goto step 4.

Having presented the mathematical theory of the Kalman filter algorithms, it is impor-
tant to note that there are certain pitfalls involved with the computational aspects of these
algorithms. These problems are inevitable due to the finite precision of digital computers.
More information about the practical implementation of the Kalman filter can be found in
the literature. [14]-[16]

9 Summary

A rigorous derivation of the Kalman filter equations has been presented which is ap-
propriate for an introductory short course on Kalman filter theory. The way it has been
defined, the Kalman filter gives the optimum unbiased, linear, least squares estimate of
the state vector based on all past and current measurements. At this point, it is strongly
recommended that the reader study a few applications of the Kalman filter to see how the
filter is used in practical problems. One application is in the radar tracking of airborne tar-
gets. This application is well described in some of the original papers.[17]-[19] The range
of applications of the Kalman filter is vast and varied. More applications can be found in
the IEEE reprint series Kalman Filtering: Theory and Application.[14]

21



References

[1] Kalman, R.E., "A New Approach to Linear Filtering and Prediction Problems," Trans.
AMSE, Journal of Basic Engineering, Vol. 82D, pp. 35-45, 1960.

[2] Kalman, R.E., and Bucy, R.S., "New Results in Linear Filtering and Prediction The-
ory," Trans. AMSE, Journal of Basic Engineering, Vol. 83D, pp. 95-108, 1961.

[3] Kalman, R.E., "New Methods and Results in Linear Prediction and Filtering The-
ory," Technical Report 61-1, Research Institute for Advanced Studies (RIAS), Martin
Company, Baltimore, Maryland, 1961.

[4] Kalman, R.E., "New Methods in Wiener Filtering Theory," in Bogdanoff, J.L., and
Kozin, F., eds., Proceedings of the First Symposium on Engineering Applications of
Random Function Theory and Probability, John Wiley and Sons, New York, pp. 270-
388, 1963.

[5] Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory,
McGraw-Hill, New York, 1969.

[6] Meditch, J.S., Stochastic Optimal Linear Estimation and Control, McGraw-Hill, New
York, 1969.

[7] Gelb, A., ed., Applied Optimal Estimation, M.I.T. Press, Cambridge, Massachusetts,
1974.

[8] Anderson, B.D.O., and Moore, J B., Optimal Filtering, Prentice-Hall, Englewood
Cliffs, New Jersey, 1979.

[9] Maybeck, P.S., Stochastic Models, Estimation and Control, Vol. 1, Academic Press,
New York, 1970.

[10] Assefi, T., Stochastic Processes and Estimation Theory with Applications, John Wiley,
New York, 1979.

[11] Chui, C.K., and Chen, G., Kalman Filtering with Real-Time Applications, 2nd ed.,
Springer-Verlag, Berlin, 1991.

[12] Kailath, T,, ed., Linear Least-Squares Estimation, Dowden, Hutchinson, & Ross,
Stroudsburg, Pennsylvania, 1977.

[13] Yaglom, A.M., Stationary Random Functions, Prentice Hall, Englewood Cliffs, New
Jersey, 1962.

[14] Sorenson, H.W., ed., Kalman Filtering: Theory and Application, IEEE Press, New
York, 1985.

[15] Bierman, G.J., Factorization Methods for Discrete Sequential Estimation, Academic
Press, New York, 1977.

22



[16] Kaminski, P.G., Bryson, A.E., and Schmidt, S.F., "Discrete Square-Root Filtering: A
Survey of Current Techniques," IEEE Transactions on Automatic Control, Vol. AC-16,
pp. 727-735, 1971.

[17] Singer, R.A., "Estimating Optimal Tracking Filter Performance for Manned Maneu-
vering Targets," IEEE Thmnsactions on Aerospace and Electronic Systems, Vol. AES-6,
pp. 473-483, 1970.

(18] Singer, R.A., and Behnke, K., "Real-Time Tracking Filter Evaluation and Selection
for Tactical Applications," IEEE Transactions on Aerospace and Electronic Systems,
Vol. AES-7, pp. 100-110, 1971.

[19] Castella, F.R., and Dunnebacke, F.G., "Analytical Results for the x, y Kalman Track-
ing Filter," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-10, pp.
891-895, 1974.

23



Appendix

Proof of Equation 149
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The purpose of this appendix is to give an alternate proof of equation (149) in section
8. It is easiest to prove this in the 1-dimensional case first. By the definition of i(n+1in),

E[II•(n+1In) - x.+4 IIj2] = min. (1)

In this notation, the minimum is taken with respect to all linear combinations i(n+l-n) of
the measurements zo,..., zý,. Alternatively, consider

E[IIFn,(nIn) - Xn+1II1I = E[lIFni(nin) - Fnx. - wnII2 (2)
= E[llFn(nln) - Fn-nll12] + E[IIWnII], (3)

where the last inequality follows since both zn and i(nIn) are uncorrelated with wn,. Using
the linearity of the expectation this becomes

E[IIF,,(nIn) - Xn+112• = Fn2E[IIi(nIn) - --n12] + E[IIw[II1. (4)

But, by the definition of i(nln),

E[I•I(nln) - XnII] = min. (5)

Consequently, equation (4) implies

E[IIF,i(nIn) - x-.+11] = min. (6)

Now, recall that !(nln) and 1(n+lun) are both linear combinations of the measurements
zo, z 1 ,.. ., zn. Therefore, if the linear combination that minimizes (1) is unique, then equa-
tions (1) and (6) together imply

i(n+lln) = F,,&(nln). (7)

This completes the proof in the 1-dimensional case.

The proof in the n-dimensional case is similar. By the definition of the estimate R(n+
1in),

E[IIi(n+1In) - xn+iI1 2] = min. (8)
On the other hand,

E[IIFnk(nIn) - x.+1112] = E[IIFn•k(nIn) - F.x. - wnl12] (9)
- E[IIFni(nIn) - Fnx, 112] + E[IIwnl12], (10)

where the second equality follows from the fact that both xn and :k(nln) are uncorrelated
with wn. Now, if the first term on the right-hand-side is a minimum, that is, if

E[IIF,,i(nln) - FnxnI12] = min, (11)

then this implies
E[IIF,.i(njn) - Xn+iII 2] = min. (12)
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Now, observe that both Fc(nIn) and i(n+ 11n) are linear combinations (really multilinear
combinations) of the measurements zo, zj, ... , zn, that is,

R(n+l1n) = Aozo + Aizj +... +Anz,, (13)
Fn•(nln) = Bozo + Bjz± +... + Bnz, (14)

Therefore, if the linear combination (13) which minimizes the mean square error (8) is
unique, then equations (8) and (12) will together imply

R(n+11n) = Fn*(nIn). (15)

This is the desired result. Thus, it remains to prove (11). First, note that this may be
written

E[IIFnk(nln) - FnxnIII = E[u4FTFnu.], (16)

where
un= =(nIn) - xn. (17)

Setting
A=F Fn, (18)

then clearly A is symmetric, and if F, is nonsingular, then A is positive definite. To prove
the desired result, it will be shown that

E[u'Aun] = min, (19)

if
E[uTu] = min, (20)

where A is any symmetric positive definite matrix. Since A is symmetric, it is orthogonally
diagonalizable. Thus, there exists a matrix S such that

STAS = D, (21)

where D is the diagonal matrix

D = . (22)

and A1,..., An,, are the eigenvalues of A. Since A is positive definite, all its eigenvalues are
positive real numbers. Now, one may write

uTAun = uT (SDST )u (23)

= v TDv (24)
= A•1i +...+•AnnU, (25)
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where
v = STu. (26)

Taking the expectation of this equation yields

E[u<Aun] = AE[vj] + ... + AE[vtJ. (27)

Since all the eigenvelues are positive, this is a minimum if

E[vjl min, (28)

E[v = rin. (29)

Equivalently, this is a minimum if

E[vT v] = min. (30)

But, using equation (26),
vT v=uTSS'u=u UTU. (31)

Hence, the condition (26) reduces to

E[u'u] = min. (32)

This is the desired result. End of proof.
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